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Contact problems on the deflection shapes of elastic membranes (serving as elements of 

the type of flooring, sheathing, etc. in real structures) in the presence of restrictions on 
the deflection are considered, In a variational formulation the mentioned problems 
reduce to finding functions which minimize some functional for given boundary condi- 

tions. and simultaneously satisfy restrictions of inequality type. One of the modern math- 
ematical, optimal-control methods is used for numerical solution of the problems on an 

electronic computer, namely, dynamic programing [l], based on the “optimality princi- 
ple” of R, Bellman as applied to the multistep process of finding the solution. 

Let us consider a rectangular elastic membrane having 
the constant tension F and loaded by an arbitrary trans- 

verse loading q(s,y). The membrane is clamped along 
the contour r, which is the boundary of some domain L) 
(Fig, 1) in the Oxy plane. The membrane deformations 

are restricted from below by an absolutely rigid flat wall 

parallel to the undeformed membrane contour and stand- 
ing a distance a off. The problem of finding the mem- 

Fig. 1 
brane deflections w(s,y) reduces to integrating a harmonic 
equation 

Q(X, 9/) 
V%:=---?- in D--Do (1) 

(outside the domain of contact D, between the membrane and the wall), where V” is the 

Laplace operator. 
Moreover, the condition IL+, y) = a should be satisfied in the contact domain D, 

Utilizing the theorem of a minimum functional f2]. and introducing the dimensionless 

variables 
d=--, f %_/‘Z<, 

J 
J==F, 

WP 
20’ = - 

aF 
q12 ’ a’= .p12 

we replace the solution of this boundary value problem by the solution of a variational 

problem to determine a function ~(5, y) which will minimize a functional of the mem- 
brane’s potential energy (the primes are henceforth omitted conventionally) 

and satisfy the boundary condition w Ir = 0 and the inequality 

~(5, y) < a in D (3) 

The presence of the restriction (3) considerably complicates the solution of the prob- 

lem under consideration, and what is particularly important, does not permit reliance on 
classical elasticity theory methods for the investigation. 

It will be show below that the method of dynamic programing {3] turns out to be very 
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effective for the analysis and numericaf soliution of this kind of two-dimensional prob- 

lem on an electronic computer (with a large volume memory) if these problems are 
interpreted as multistep processes of finding the solution. Let us note that a solution was 
given by the dynamic programing method in [4] for the contact problem when the desired 
function was a function of one variable (elastic bending of a rod). 

In order to solve the posed problem by the method of dynamic programing in discrete 
form, let us divide the rectangular domain D into a mesh with nodes at the vertices 
(Xi, #j) 2= 0, 1, 2.--s ?R; i = O,i, Z..., IZ. We shall calculate the values of the function 
wfx, y) and its derivatives only at the obtained nodes, i.e. 

3W t?W 

w (“67 YjfsWijV 
wisl,j -% l,j +i - Wfi 

-1=3 & Ax * F= Ay 

In this case the problem of minimizing the integral (2) is replaced by the following: 
to minimize the target function 

under the conditions that 
Wijlr = 0, UJ(S~Y~) < u in D, a > 0 (5) 

Let F, (cl,..., c m-l) be the minimum of J in all w+j # wik under the condition that 
the process starts at the time k from the state (cl..., c,_~> and continues to k = (n - 1) 

stages at an optimal strategy, i.e., 

m--17x---I' (61 

F, (cl, . . St cm-J= min 

where w ih’ = ci and the boundary conditions (5) are satisfied. Then, according to the 
optimality principle of dynamic programing 131, the functional equations for the posed 

problem are written as m-1 
F, (cl, . . ., cm-l) = min {z (+ [( c”‘\; ci )Pf (7) 

+( u”ik;y- ” ,‘I- ‘Itkci) Ax AY +- Fktl (wl,k+l, ws,k+l, . . .t w+l,,k+l)} (k=09 I, ***n--21 

Here W~i.r wm?ir ‘Do,k,p ‘Dm k+l are known according to (5). For F,+% we have 

m-1 
F,_, @I, . . .t (81 

u 

0.04 

Fig. 2 

for known win, w~,+_~, w,,,,,,-I. 
Executing the algorithm (‘7), (8) on an electronic computer, 

we find values of the target function (4) while taking account 
of (5). and also the desired values of w&y) at discrete points 
of the mesh domain zi, yj. 

A square membrane with sides z = 1, loaded by a uniformly 
distributed loading of intensity Q = 1 and restricted by planes 
a = 0.04 and a = 0.07. was computed on an electronic compu- 
ter by means of the algorithm presented above as a numerical 
illustration. The domain under investigation was approximated 
by a rectangular mesh with m = 4 and n = 8. In this case (7) 
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Results of the calculations are presented in Fig. 2. Membrane deflections at the sec- 
tion 5 = 0.5 are shown for a = 0,04 and ,Z = 0.07 by curves 1 and 2 , respectively. 

The value of the functional at a = 0.07 turned out to be J = - 0.0151. The results 
obtained are in good agreement with the results in IS], where the solution of an analog- 
ous problem was performed by the method of local variations. 

In conclusion, let us note that dynamic programing can be applied to solve such a 
class of two-dimensional problems even for restrictions of more general type on the 
deformation. 
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The problem of splitting an infinite elastic wedge with a thin perfectly rigid smooth 
plate is considered. The plate is driven in along the bisectrix of the wedge angle and a 

slot forms in front of it, when a < r < b . The wedge faces are either free or hinged. 
Formulas defining the form of the slot surface and the normal stress intensity coeffi- 

cient are obtained. Effective asymptotic methods developed in [I] as well as the math- 
ematical apparatus of the Wiener-Hopf method r23 are employed in the course of solu- 

tion. 
1, Statsment of the problem, Solution of the problem by appro- 

xlmotlng the function L. Let a thin perfectly rigid smooth plate of constant 


